Architectural Acoustics

by M. David Egan

Library of Congress Cataloging-in-Publication Data

Egan, M. David., 1941-
Architectural acoustics / by M. David Egan.
p. cm.
Includes bibliographical references and index.
TA365.E33 2007
729.29—dc22 2006101133

This publication contains information obtained from authentic and highly regarded sources. Reprinted material is used with permission, and sources are indicated. Reasonable effort has been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use.

All rights reserved. Neither this publication nor any part thereof may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher.

The copyright owner's consent does not extend to copying for general distribution for promotion, for creating new works, or for resale. Specific permission must be obtained from J. Ross Publishing for such purposes.

Phone: (954) 727-9333
Fax: (561) 892-0700
Web: www.jrosspub.com
CHANGES IN SOUND LEVEL

The table below is an approximation of human sensitivity to changes in sound level. Sound intensity is not perceived directly at the ear; rather it is transferred by the complex hearing mechanism to the brain where acoustical sensations can be interpreted as loudness. This makes hearing perception highly individualized. Sensitivity to noise also depends on frequency content, time of occurrence, duration of sound, and psychological factors such as emotion and expectations (cf., O. L. Angevine, "Individual Differences in the Annoyance of Noise," Sound and Vibration, November 1975). Nevertheless, the table is a reasonable guide to help explain increases or decreases in sound levels for many architectural acoustics situations.

<table>
<thead>
<tr>
<th>Change in Sound Level (dB)</th>
<th>Change in Apparent Loudness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Imperceptible (except for tones)</td>
</tr>
<tr>
<td>3</td>
<td>Just barely perceptible</td>
</tr>
<tr>
<td>6</td>
<td>Clearly noticeable*</td>
</tr>
<tr>
<td>10</td>
<td>About twice (or half) as loud</td>
</tr>
<tr>
<td>20</td>
<td>About 4 times (or one-fourth) as loud</td>
</tr>
</tbody>
</table>

*For example, distance to the point source outdoors is halved or doubled.

The change in intensity level (or noise reduction, abbreviated NR) can be found by:

\[NR = L_1 - L_2 \]

and

\[NR = 10 \log_{10} \frac{I_1}{I_2} \]

where

- \(NR \) = difference in sound levels between two conditions (dB)
- \(I_1 \) = sound intensity under one condition (W/m²)
- \(I_2 \) = sound intensity under another condition (W/m²)

Note: By substitution of the inverse-square law expression from page 11 into the above formula

\[NR = 10 \log \left(\frac{d_2}{d_1} \right)^2 \]

and therefore, in terms of distance ratio \(d_2/d_1 \),

\[NR = 20 \log \left(\frac{d_2}{d_1} \right) \]

for point sources outdoors, where \(d \)'s are the distances.