Important Information about Your Water Quality

Dear Davis Water Customer,

The City of Davis is pleased to provide the 2018 Water Quality Report to you. Last year your tap water met all State and Federal drinking water standards.

To ensure that your tap water continues to meet all drinking water standards, approximately two thousand water samples were collected and analyzed in 2018 for various constituents. The City also collected samples beyond what was required in order to provide you the most comprehensive information about your tap water. In order to deliver drinking water to your tap, the City performed preventative maintenance on the distribution system by exercising valves and hydrants, replacing mainlines, and rehabilitating wells. Over the last year, the City began exchanging the current water meters with Advanced Metering Infrastructure (AMI), which provides hourly water usage information to customers.

As we head into 2019, the City will continue to operate and maintain the distribution system efficiently and effectively in order to continue to deliver high quality and reliable drinking water to your tap.

Sincerely,
Stan Gryczko, Assistant Public Works Director

Our Continuing Commitment to You

Our staff of highly trained and certified operators are available around the clock to provide service for any emergency related to the City's water supply. Through teamwork, professionalism, and hard work, the City of Davis Water Division provides drinking water that meets or exceeds all state and federal health standards.

Report Highlights

This report includes:
- Updates and information about meeting all state and federal drinking water standards;
- Detected constituents in the City's water supplies;
- Health related information;
- Water system information and drinking water treatment; and,
- Helpful hints on water conservation and source water protection.

To Our Water Customers

This report is prepared in accordance with the United States Environmental Protection Agency (US EPA) and the State Water Resources Control Board – Division of Drinking Water (State Board) regulations under the Safe Drinking Water Act that requires water providers to report annual water quality information to their customers. This publication lists all constituents detected in your water supply and information about your water source, what it contains, how it compares to state and federal standards, and other related information.

For more information about this report, or for any questions relating to your drinking water, please contact City of Davis Public Works at PWWeb2@CityofDavis.org or (530) 757-5686 and ask for Heather Brown. If you ever experience a problem with your water supply after hours, please call the non-emergency Police Department number at (530) 747-5400.

Community Participation

The Davis City Council and the Natural Resources Commission (NRC) can receive public comments at their regularly scheduled meetings. Please check the City’s web site at CityofDavis.org or call (530) 757-5602 for Council dates or (530) 757-5686 for NRC dates. Additionally, you can sign up to receive email notifications at https://cityofdavis.org/city-hall/city-manager-s-office/enotification.
The City of Davis water system is a conjunctive use system and utilizes both surface water and groundwater for its potable water supply. Surface water is supplied by the Sacramento River and groundwater is pumped from underlying aquifers that range from 208 to 1,762 feet below ground surface.

Water Fact

Last year, your drinking water on average consisted of 80% surface water and 20% groundwater - this equaled 3.32 billion gallons of drinking water.

Source Water Assessment

Surface Water

The source water assessment for the Sacramento River watershed was conducted by several agencies. The Sacramento River Watershed Sanitary Survey 2015 Update Report can be obtained at https://www.wdcwa.com/project-history. The report also identified eight potential source water/watershed contaminant sources: agricultural drainage; livestock; river corridor and river recreation; illegal camping; urban runoff; industrial NPDES discharges; wastewater facilities; and watershed spills. The report stated that “overall, the Sacramento River continued to provide good quality raw water. The raw water can currently be treated to meet all drinking water standards using conventional water treatment processes.”

Groundwater

A source water assessment for the City of Davis’ groundwater wells was completed in 2002. The goal of this project was to determine the water system’s vulnerability to possible sources of contamination. Our groundwater is most vulnerable to historic and present-day land use activities, including agricultural and light industrial use. Additionally, the water source is vulnerable to naturally occurring contaminants such as selenium and chromium. Overall, there is a slight to moderate threat that the City’s water source could become contaminated by these land use activities and naturally occurring contaminants. For information on the summary of the assessment, contact City Water Quality Staff at (530) 757-5686 or e-mail PWWeb@cityofdavis.org.

Water Treatment Process

Surface Water: Surface water from the Sacramento River is taken in at the Sacramento River Mile 70.5 marker and pumped to the Regional Water Treatment Facility in Woodland. The raw water is treated by traditional surface water techniques (Figure 1), including flash mixing and granular media filtration to remove microorganisms and other contaminants. The finished water is dosed with chlorine for disinfection and with phosphoric acid to create ortho-phosphate for corrosion control. The water is dosed to achieve a target chlorine residual of 1.0 ppm and 2.5 ppm for ortho-phosphate prior to entering the transmission line.

Groundwater: Groundwater is treated at each well head with sodium hypochlorite (chlorine) to ensure a target residual of 1.0 ppm. At Well 32, manganese is removed from the source water before entering the distribution system. The groundwater is also filtered naturally as it passes through geologic formations such as sand and clay layers.

No fluoride is added to the surface water or the groundwater.

Distribution System Operations

Surface water is pumped into a transmission line at the Regional Water Treatment Facility in Woodland. The water flows through a transmission line into Davis and then branches off to west and south Davis. Surface water enters into the City’s distribution system primarily at three main turn-outs located in west, central, and south Davis.

The City’s production wells pump groundwater directly from underlying aquifers into the distribution system. The groundwater and surface water are blended in the distribution system prior to arriving at the tap.

The ratio of surface water to groundwater varies throughout the year. The City’s surface water allotment is 10.2 million gallons per day. During periods of low water demand, the majority of the water entering into the distribution system is surface water. Wells are operated periodically during the low demand months to ensure that they are exercised properly and as required for water quality testing. During the high water demand periods, such as the warmer months of the year, groundwater is supplemented to meet demand. In 2018, surface water accounted for an average of 80% of the total amount of water that was consumed, while the monthly average of surface water ranged from 68% to 95%.

Figure 1: Schematic diagram of the surface water treatment process
Water Quality Testing
The City is required to monitor drinking water for specific constituents on a regular basis. The City’s monitoring program consists of sampling certain constituents on a weekly, monthly, quarterly, or annual basis. The City samples for constituents at sampling stations within the distribution system, at municipal groundwater wells, and as surface water enters the City. During the past year, the City tested for over 200 regulated and unregulated constituents. Twenty routine bacteriological samples are collected weekly at dedicated locations throughout the City.

Water Hardness
Surface water is naturally softer than local groundwater. In 2015, when the City supplied only groundwater, the weighted average for hardness was 306 parts per million (ppm) or 17.9 grains per gallon (gpg). In 2018, the City supplied 80% surface water and 20% groundwater, and the weighted average for hardness in 2018 was reduced to 73.8 ppm or 4.3 gpg. For more information on water hardness, please visit the USGS website on water hardness at https://water.usgs.gov/owq/hardness.

Lead Sampling in Schools
The City conducted lead testing at one private school in 2018. The Davis Joint Unified School District (DJUSD) requested testing in 2017 and the City conducted lead testing at fifteen schools during that year. The City has completed all current testing in 2017 and the City conducted lead testing at fifteen schools during that year. The City has completed all current requirements for lead sampling in schools.

1,2,3-Trichloropropane
The City, as required by the State Board, conducted quarterly sampling of 1,2,3-trichloropropane, a synthetic organic chemical, at all active municipal wells. The compound was not detected in the groundwater.

Source Water Protection Tips
Protection of drinking water is everyone’s responsibility. You can help protect your community’s drinking water source in several ways:
- Eliminate excess use of lawn and garden fertilizers and pesticides – they contain hazardous chemicals that can reach your drinking water source.
- Pick up after your pets. Pet waste can carry diseases.
- Dispose of chemicals properly; take used motor oil to a recycling center.
- Volunteer in your community. Find a watershed or wellhead protection organization in your community and volunteer to help.
- Contact the City to request that a storm drain marker be placed at your nearest storm drain, if one does not exist already. These markers provide the message “Rainwater Only – Drains to the Wetlands.”

Water Conservation
During the most recent drought, many residents in Davis instituted long-term changes to their water use by replacing turf areas with low-water use plantings, replacing older appliances and fixtures with water and energy efficient models, and making changes in everyday water use habits. Whether we are in a dry or wet year, there are always actions we can take to increase long-term water use efficiency. For more information on the State’s long term water conservation framework, visit https://water.ca.gov/Programs/Water-Use-And-Efficiency/Making-Conservation-a-California-Way-of-Life.

The AquaHawk online customer water use portal is available to City of Davis water customers. The AquaHawk portal allows customers to view their hourly water usage and set and receive usage alerts. For more water savings tips and information on AquaHawk, water-wise landscaping, and links to helpful indoor and outdoor water use efficiency websites, visit www.SaveDavisWater.org.

Water Conservation Tips
Did you know that the average U.S. household uses approximately 400 gallons of water per day or 100 gallons per person per day? Luckily, there are many low-cost and no-cost ways to conserve water. Small changes can make a big difference – try one today and soon it will become second nature.
- Take short showers – a 5 minute shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath.
- Shut off water while brushing your teeth, washing your hair, and shaving and save up to 500 gallons a month.
- Consider installing a water-efficient showerhead. They are inexpensive, easy to install, and can save you up to 750 gallons a month.
- Run your clothes washer and dishwasher only when they are full. You can save up to 1,000 gallons a month.
- Water plants only when necessary.
- Fix leaking toilets and faucets. Faucet washers are inexpensive and take only a few minutes to replace. To check your toilet for a leak, place a few drops of food coloring in the tank and wait. If it seeps into the toilet bowl without flushing, you have a leak. Fixing it or replacing it with a new, more efficient model can save up to 1,000 gallons a month.
- Adjust sprinklers so only your lawn is watered and keep water off the sidewalk. Apply water only as fast as the soil can absorb it and during the late evening or early morning to reduce evaporation.
- Teach your kids about water conservation to ensure a future generation that uses water wisely. Make it a family effort to reduce next month’s water bill!
- Sign up for AquaHawk at www.SaveDavisWater.org.
- Visit https://www.epa.gov/watersense for more information.

Report a Water Quality Concern
Do you have a question or concern about your water quality? Are you experiencing any problems with your drinking water supply, such as discolored water or unusual taste or odor? Contact the Public Works Department during regular business hours at (530) 757-5686 or contact the non-emergency Police Department number after hours at (530) 747-5400.
Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly persons, and infants may be particularly at risk of infections. These people should seek advice about drinking water from their health care providers. The US EPA/CDC (Centers for Disease Control) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at (1-800-426-4791).

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Safe Drinking Water Hotline.

What Does Our Water Contain?

The Safe Drinking Water Act requires all water purveyors to sample their source and treated water for biological, inorganic, organic, and radioactive constituents. The State Board allows systems to monitor for certain contaminants less than once per year because the concentration of these contaminants do not change frequently.

Substances That Could Be in Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and groundwater. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Contaminants That May Be Present in Source Water Include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic Contaminants, such as salts and metals, that can be naturally occurring or can result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides that may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and which can also come from gas stations, urban storm water runoff, agricultural applications, and septic systems;

Radioactive Contaminants that can be naturally occurring or can be the result of oil and gas production and mining activities.

Important Health Information

Definitions

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close as is economically and technologically feasible to the PHGs (or MCLGs) as an additional protection for vulnerable groups.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the US EPA.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NL (Notification Level): Health based advisory set by the State Board for constituents without an MCL. This is not an enforceable standard, although requirements and recommendations may apply if detected above this level.

NS: No standard.

pCi/L (picocuries per liter): A measure of radioactivity.

PDWS (Primary Drinking Water Standard): MCLs, MRDLs, and treatment techniques (TTs) for contaminants that affect health along with their monitoring, reporting, and water treatment requirements.

PHG (Public Health Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the CA EPA.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

SMCL (Secondary MCL): SMCLs are set to protect the odor, taste, and appearance of drinking water.

T.O.N. – Threshold Odor Number

TT (treatment technique): A required process intended to reduce the level of a contaminant in drinking water.

μS/cm (microsiemens per centimeter): A unit expressing the amount of electrical conductivity of a solution.
CONSTITUENTS DETECTED IN OUR DRINKING WATER

<table>
<thead>
<tr>
<th>DETECTION OF AN INORGANIC CONSTITUENT WITH A PRIMARY DRINKING WATER STANDARD</th>
<th>Regulatory Limits</th>
<th>Range Detected</th>
<th>Weighted Average</th>
<th>Major Sources in Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constituents</td>
<td>Unit</td>
<td>MCL (AL) [MRDL]</td>
<td>PHG or MCLG [MRDLG]</td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>ppb</td>
<td>10</td>
<td>0.004</td>
<td><2 – 8.4</td>
</tr>
<tr>
<td>Barium</td>
<td>ppm</td>
<td>1</td>
<td>(2)</td>
<td><0.05 – 0.17</td>
</tr>
<tr>
<td>Total Chromium*</td>
<td>ppb</td>
<td>50</td>
<td>(100)</td>
<td><10 – 52</td>
</tr>
<tr>
<td>Fluoride</td>
<td>ppm</td>
<td>2.0</td>
<td>1</td>
<td><0.1 – 0.4</td>
</tr>
<tr>
<td>Lead</td>
<td>ppb</td>
<td>(15)</td>
<td>0.2</td>
<td><1 – 1.1</td>
</tr>
<tr>
<td>Nitrate (as N)</td>
<td>ppm</td>
<td>10</td>
<td>10</td>
<td><0.23 – 6</td>
</tr>
<tr>
<td>Selenium</td>
<td>ppb</td>
<td>50</td>
<td>30</td>
<td><2 – 45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ORGANIC CONSTITUENTS</th>
<th>Unit</th>
<th>MCL (AL) [MRDL]</th>
<th>PHG or MCLG [MRDLG]</th>
<th>Range Detected</th>
<th>Weighted Average</th>
<th>Major Sources in Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Trihalomethanes</td>
<td>ppb</td>
<td>80</td>
<td>NS</td>
<td><0.5 – 7.5</td>
<td>6</td>
<td>By-product of water chlorination**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RADIOACTIVE CONSTITUENTS</th>
<th>Unit</th>
<th>MCL (AL) [MRDL]</th>
<th>PHG or MCLG [MRDLG]</th>
<th>Range Detected</th>
<th>Weighted Average</th>
<th>Major Sources in Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Alpha</td>
<td>pCi/L</td>
<td>15</td>
<td>(0)</td>
<td><3 – 12.1</td>
<td><3</td>
<td>Erosion from natural deposits</td>
</tr>
<tr>
<td>Gross Beta***</td>
<td>pCi/L</td>
<td>50</td>
<td>(0)</td>
<td><4 – 10.45</td>
<td><4</td>
<td>Decay of natural and man-made deposits</td>
</tr>
<tr>
<td>Combined Radium</td>
<td>pCi/L</td>
<td>5</td>
<td>(0)</td>
<td><2 – 3.95</td>
<td><2</td>
<td>Erosion from natural deposits</td>
</tr>
<tr>
<td>Uranium****</td>
<td>pCi/L</td>
<td>20</td>
<td>0.43</td>
<td><1 – 4.6</td>
<td><1</td>
<td>Erosion from natural deposits</td>
</tr>
</tbody>
</table>

Sampled From the Point of Entry

DISINFECTION BY-PRODUCTS

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>MCL (AL) [MRDL]</th>
<th>PHG or MCLG [MRDLG]</th>
<th>Range Detected</th>
<th>Weighted Average</th>
<th>Major Sources in Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromate</td>
<td>ppb</td>
<td>10</td>
<td>0.1</td>
<td><1 – 1.3</td>
<td><1</td>
<td>By-product of water chlorination</td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>ppm</td>
<td>TT</td>
<td>N/A</td>
<td>0.73 – 1.4</td>
<td>0.8</td>
<td>Various natural and manmade sources</td>
</tr>
</tbody>
</table>

Sampled From the Distillation System

DISINFECTION BY-PRODUCTS

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>MCL (AL) [MRDL]</th>
<th>PHG or MCLG [MRDLG]</th>
<th>Range Detected</th>
<th>Weighted Average</th>
<th>Major Sources in Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Trihalomethanes</td>
<td>ppb</td>
<td>80</td>
<td>0.8</td>
<td>2.9 – 37</td>
<td>N/A</td>
<td>By-product of water chlorination</td>
</tr>
<tr>
<td>Total Haloacetic Acids</td>
<td>ppb</td>
<td>60</td>
<td>N/A</td>
<td><2 – 13</td>
<td>N/A</td>
<td>By-product of water chlorination</td>
</tr>
<tr>
<td>Free Chlorine</td>
<td>ppm</td>
<td>[4.0]</td>
<td>[4.0]</td>
<td>0.04 – 1.22</td>
<td>N/A</td>
<td>By-product of water chlorination</td>
</tr>
</tbody>
</table>

MICROBIAL RESULTS

<table>
<thead>
<tr>
<th></th>
<th>% Positive</th>
<th>MCL</th>
<th>MCLG</th>
<th>Samples Collected</th>
<th>Major Sources in Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform Bacteria</td>
<td>0% - 2.3%</td>
<td>5%</td>
<td>0%</td>
<td>1052</td>
<td>Naturally occurring in the environment</td>
</tr>
</tbody>
</table>

* Constituents in bold text were in exceedance, see the next page for more information. **Total Trihalomethanes may also occur naturally. ***The State Board considers 50 pCi/L to be the level of concern for beta particles. ****The uranium result in pCi/L is based on a calculation.

Water Fact

The City submitted over 2000 samples for analysis and only the detected constituents are listed in this report.
The source water at Well 32 is treated for manganese removal and historically, levels of manganese for the treated water have been not detectable. The City was required to sample the water monthly and in March of 2018 the manganese level fell below the detection level at the treated tap was reported at 190 ppb, which indicated that the removal system was not operating properly. Once corrective actions were taken, the manganese level fell below the detection level at the treated tap was reported at 190 ppb, which indicated that the removal system was not operating properly.

The City was required to sample the water monthly and in March of 2018 the manganese level fell below the detection level at the treated tap was reported at 190 ppb, which indicated that the removal system was not operating properly. Once corrective actions were taken, the manganese level fell below the detection level at the treated tap was reported at 190 ppb, which indicated that the removal system was not operating properly.

Iron, Manganese, and Odor (secondary standards)
Well 11 had a high concentration of iron during the quarterly sampling event in February of 2018 and was decommissioned in March of 2018. Well 23 is monitored on a quarterly basis for iron and as of December 31, 2018, the running annual average for iron was 153 ppb. The SMCL for iron is 300 ppb.

The source water at Well 32 is treated for manganese removal and historically, levels of manganese for the treated water have been not detectable. The City was required to sample the treated water monthly and in March of 2018 the manganese level at the treated tap was reported at 190 ppb, which indicated that the removal system was not operating properly. Once corrective actions were taken, the manganese level fell below the detection level at the treated tap was reported at 190 ppb, which indicated that the removal system was not operating properly.

Well 30 had an elevated odor threshold result during the sampling event in April. However, the running annual average as of December 31, 2018, for odor was 2.9 Threshold Odor Number (T.O.N.). The SMCL for odor is 3 T.O.N.
Nitrate in Drinking Water

Nitrate in drinking water at levels above 45 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant’s blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 45 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain enzyme deficiencies. If you are caring for an infant, or if you are pregnant, ask advice from your health care provider.

Testing for Cryptosporidium

Cryptosporidium is a microbial pathogen found in surface water throughout the United States. Cryptosporidium was detected five times in the untreated surface water during 2018. However, the Regional Water Treatment Facility is designed to remove and/or deactivate these pathogens to ensure that this pathogen is not present in the finished water.

Unregulated Contaminant Monitoring Rule 4

As part of the Safe Drinking Water Act Amendments of 1996, the US EPA is required to create a list every five years of up to 30 unregulated contaminants to be monitored in public water supplies. This list is derived from the Candidate Contaminant List (CCL) and represents compounds which the US EPA may consider as candidates for regulation in the future.

The City completed sampling requirements for the Unregulated Contaminant Monitoring Rule 4 (UCMR4) in 2018. The City sampled selected wells, sampling stations, and the Point of Entry for surface water for three Assessment Monitoring (AM) lists of unregulated contaminants.

The table below lists the unregulated constituents that were detected during UCMR4 sampling events. For more information regarding the UCMR4 sampling program and for a complete list of constituents, visit the Water Quality Results page within http://cityofdavis.org/city-hall/public-works/water/water-quality-information/water-quality-results.

Unregulated Contaminants Rule 4 Results

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Unit</th>
<th>Year Sampled</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manganese*</td>
<td>ppb</td>
<td>2018</td>
<td><10 – 200</td>
</tr>
<tr>
<td>Bromochloroacetic Acid (BCAA)**</td>
<td>ppb</td>
<td>2018</td>
<td>0.67 – 3.6</td>
</tr>
<tr>
<td>Bromodichloroacetic Acid (BDCAA)**</td>
<td>ppb</td>
<td>2018</td>
<td>0.59 – 2.6</td>
</tr>
<tr>
<td>Chlorodibromoacetic Acid (CDBAA)**</td>
<td>ppb</td>
<td>2018</td>
<td>0.37 – 1.3</td>
</tr>
<tr>
<td>Dibromoacetic Acid (DBAA)**</td>
<td>ppb</td>
<td>2018</td>
<td>0.43 – 1.7</td>
</tr>
<tr>
<td>Dichloroacetic Acid (DCAA)**</td>
<td>ppb</td>
<td>2018</td>
<td>0.96 – 5.6</td>
</tr>
<tr>
<td>Trichloroacetic Acid (TCAA)**</td>
<td>ppb</td>
<td>2018</td>
<td>0.72 – 3.8</td>
</tr>
</tbody>
</table>

*Manganese was tested at the source water. The weighted average was <10 ppb.

Although manganese is regulated under the California Code of Regulations, UCMR4 required testing of this constituent at a lower detection level.

**The Haloacetic Acids (HAA) were tested from the distribution system.

City of Davis Public Works Department
CityofDavis.org
PWWeb@CityofDavis.org
(530) 757-5686