City of Davis
Pavement Management Program
Davis Street and Bike Path System

• 163 centerline miles of streets (33 million square feet)
 – 34.6 miles of arterials 21%
 – 22.8 miles of collectors 14%
 – 103.9 miles of local streets 64%

• 52 miles of bike paths (3 million square feet)
Pavement Management Consultant

• City conducted competitive selection process
 – 6 proposals received
 – 3 firms interviewed

• Entered into agreement with Nichols Consulting Engineers in August 2012
 – Surveyed all City streets and bike paths in fall 2012
 – Prepared three budget scenarios
 – Report will be posted on PW webpage
Pavement Condition Index (PCI)

• Definition: Method of quantifying pavement condition

• Score from 0 to 100
 – Score of 100 given to a newly paved street or path
Pavement Condition Index (PCI)

- Average PCI of Davis streets = 62
- Average PCI of bike paths = 59

[Condition Category | Pavement Condition | PCI Category]

I | Very Good | 100
II/III | Good | 70
IV | Poor | 50
V | Failed | 25

Courtesy of NCE
Arterials

<table>
<thead>
<tr>
<th>Functional Class / Category</th>
<th>Centerline Miles</th>
<th>Average PCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterials</td>
<td>34.6</td>
<td>63</td>
</tr>
</tbody>
</table>

[Map of Arterial Roads]
Collectors

<table>
<thead>
<tr>
<th>Functional Class / Category</th>
<th>Centerline Miles</th>
<th>Average PCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collectors</td>
<td>22.8</td>
<td>60</td>
</tr>
</tbody>
</table>
Local Streets

<table>
<thead>
<tr>
<th>Functional Class / Category</th>
<th>Centerline Miles</th>
<th>Average PCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>103.9</td>
<td>62</td>
</tr>
</tbody>
</table>
Bike Paths

<table>
<thead>
<tr>
<th>Functional Class / Category</th>
<th>Centerline Miles</th>
<th>Average PCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bike Paths</td>
<td>51.7</td>
<td>59</td>
</tr>
</tbody>
</table>

[Map of Bike Paths]
Summary

<table>
<thead>
<tr>
<th>Functional Class / Category</th>
<th>Centerline Miles</th>
<th>Average PCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterials</td>
<td>34.6</td>
<td>63</td>
</tr>
<tr>
<td>Collectors</td>
<td>22.8</td>
<td>60</td>
</tr>
<tr>
<td>Local</td>
<td>103.9</td>
<td>62</td>
</tr>
<tr>
<td>Average Street</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>Bike Paths</td>
<td>51.7</td>
<td>59</td>
</tr>
</tbody>
</table>
City of Davis
“State of the Pavements”

Margot Yapp, P.E.
Nichols Consulting Engineers, Chtd.
February 5th, 2013
What is a Pavement Management Program?

- A tool to assist Cities make cost-effective decisions
- Answers 4 main questions:
 - What does Davis have in the street & bike network?
 - What condition is it in?
 - What repairs are needed and when?
 - How much money is required to maintain or improve streets/bike paths cost-effectively?
- StreetSaver® software
How is Condition Measured?

- **Good - Excellent**: Davis is at 62 (for Streets) and 59 (for Bicycle paths).
- **At Risk**: 70
- **Poor**: 50
- **Failed**: 25
- **0**: Failed

Images depict the condition of the street and bicycle path.
Current PCI condition- 2012

- **Street Network**
 - **Good to Excellent**: 36.9%
 - **Fair**: 34.0%
 - **Poor**: 26.8%
 - **Failed**: 2.3%

- **Bicycle Paths**
 - **Good to Excellent**: 26.9%
 - **Fair**: 32.3%
 - **Poor**: 36.1%
 - **Failed**: 4.7%

Current PCI Condition - 2012

- **Good (71-100)**
- **At Risk (55-70)**
- **Poor (25-54)**
- **Failed (0-24)**
“Right” Treatment Depends on . . .

- Existing pavement
 - Distresses, structure, drainage, etc.
- Environment
 - Climate, traffic, etc.
- Life cycle costs
 - Initial, maintenance, rehab & downtime costs, service life, etc.
- Locally available treatments
 - Materials, contractors, quality, performance, costs, etc.
Types of Treatments

- Preventive Maintenance:
 - Good - Excellent
 - At Risk
 - Poor
 - Failed

- Rehabilitation

- Reconstruction
Preventive Maintenance Treatments

- Crack Seal
- Fog Seal
- Slurry Seal
- Scrub Seal
- Chip Seal
- Cape Seal
- Micro-Surfacing
- Ultrathin Bonded Wearing Surface
Rehabilitation

- AC overlays
 - Rubberized AC
 - Warm mix asphalt
- Mill and fill
- Cold in place recycling
- Recycle AC at plant
Reconstruction

- Remove and replace
- Full depth reclamation (FDR)
- Perpetual pavements
“Pay Now or Pay More Later”

Pavement Condition (PCI)

Time

- Surface Seal: $4.50/sy
- Thin AC Overlay: $20/sy
- Thick AC Overlay: $27/sy
- Reconstruction: $81/sy
Funding Scenarios
- Streets -
Existing City Budget ($1 M/year)
Improve PCI to 70 ($8M/year)
Maintain Backlog ($7M/year)

Unfunded Backlog ($ Millions)

Pavement Condition Index (PCI)

Year: 2012 to 2032

Unfunded Backlog ($7M/year)
Funding Scenarios
- Bicycle Paths -
Existing City Budget ($200k/yr)

Unfunded Backlog ($ Millions)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PCI</td>
<td>59</td>
<td>61</td>
<td>60</td>
<td>59</td>
<td>59</td>
<td>58</td>
<td>57</td>
<td>56</td>
<td>56</td>
<td>54</td>
<td>54</td>
<td>53</td>
<td>52</td>
<td>51</td>
<td>51</td>
<td>50</td>
<td>49</td>
<td>49</td>
<td>48</td>
<td>47</td>
<td>46</td>
</tr>
</tbody>
</table>

Pavement Condition Index (PCI)

- **Unfunded Backlog:**
 - 2012: $1
 - 2013: $1
 - 2014: $1
 - 2015: $2
 - 2016: $3
 - 2017: $5
 - 2018: $8
 - 2019: $9
 - 2020: $10
 - 2021: $11
 - 2022: $11
 - 2023: $12
 - 2024: $13
 - 2025: $15
 - 2026: $16
 - 2027: $17
 - 2028: $20
 - 2029: $22
 - 2030: $25
 - 2031: $28
 - 2032: $30

- **PCI:**
 - 2012: 59
 - 2013: 61
 - 2014: 60
 - 2015: 59
 - 2016: 59
 - 2017: 58
 - 2018: 57
 - 2019: 56
 - 2020: 56
 - 2021: 54
 - 2022: 54
 - 2023: 53
 - 2024: 52
 - 2025: 51
 - 2026: 51
 - 2027: 50
 - 2028: 49
 - 2029: 49
 - 2030: 48
 - 2031: 47
 - 2032: 46
Improve PCI to 70 ($0.7M/year)
Maintain backlog ($655k/Year)

<table>
<thead>
<tr>
<th>Year</th>
<th>PCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>69</td>
</tr>
<tr>
<td>2013</td>
<td>70</td>
</tr>
<tr>
<td>2014</td>
<td>71</td>
</tr>
<tr>
<td>2015</td>
<td>71</td>
</tr>
<tr>
<td>2016</td>
<td>71</td>
</tr>
<tr>
<td>2017</td>
<td>71</td>
</tr>
<tr>
<td>2018</td>
<td>71</td>
</tr>
<tr>
<td>2019</td>
<td>71</td>
</tr>
<tr>
<td>2020</td>
<td>71</td>
</tr>
<tr>
<td>2021</td>
<td>71</td>
</tr>
<tr>
<td>2022</td>
<td>71</td>
</tr>
<tr>
<td>2023</td>
<td>71</td>
</tr>
<tr>
<td>2024</td>
<td>71</td>
</tr>
<tr>
<td>2025</td>
<td>71</td>
</tr>
<tr>
<td>2026</td>
<td>71</td>
</tr>
<tr>
<td>2027</td>
<td>71</td>
</tr>
<tr>
<td>2028</td>
<td>71</td>
</tr>
<tr>
<td>2029</td>
<td>71</td>
</tr>
<tr>
<td>2030</td>
<td>71</td>
</tr>
<tr>
<td>2031</td>
<td>71</td>
</tr>
<tr>
<td>2032</td>
<td>71</td>
</tr>
</tbody>
</table>

Unfunded Backlog ($ Millions)

- 2012: $59
- 2013: $61
- 2014: $60
- 2015: $60
- 2016: $63
- 2017: $66
- 2018: $71
- 2019: $73
- 2020: $74
- 2021: $74
- 2022: $73
- 2023: $73
- 2024: $72
- 2025: $72
- 2026: $71
- 2027: $70
- 2028: $71
- 2029: $70
- 2030: $71
- 2031: $70
- 2032: $69

Pavement Condition Index (PCI)
Why are costs so high?

Pavements are deteriorating rapidly

Asphalt prices increased eight-fold since 1999
Conclusions

• Davis has a substantial investment:
 • $167 M - streets
 • $24 M - bicycle paths

• Network are in “fair” condition
 • Streets PCI = 62, Bike PCI = 59

• Network will continue to deteriorate under existing funding levels

• Significant funding increases are needed to improve conditions
Margot Yapp, P.E.
Nichols Consulting Engineers, Chtd.
myapp@ncenet.com
(510) 215-3620
Looking Forward – Policy Considerations

• What additional information would Council like for future meetings?

• Budget Issues (How much to fund, how to fund)

• How to prioritize streets/paths?
 – All treated equally
 – Arterials/collectors versus local
 – Those near schools, parks
 – Let Streetsaver select

• What scenario to use: NCE recommends Scenario 3 but we could select scenario 1 or 2 or develop a fourth (e.g. let no street drop below a threshold PCI)